Tuesday, November 25, 2008

Synchronize And Stabilize Model

Synchronize and stabilize method combines the advantages of the spiral model with technology for overseeing and managing source code. This method allows many teams to work efficiently in parallel. This approach was defined by David Yoffie of Harvard University and Michael Cusumano of MIT. They studied how Microsoft Corp. developed Internet Explorer and Netscape Communications Corp. developed Communicator, finding common threads in the ways the two companies worked. For example, both companies did a nightly compilation (called a build) of the entire project, bringing together all the current components. They established release dates and expended considerable effort to stabilize the code before it was released. The companies did an alpha release for internal testing; one or more beta releases (usually feature-complete) for wider testing outside the company, and finally a release candidate leading to a gold master, which was released to manufacturing. At some point before each release, specifications would be frozen and the remaining time spent on fixing bugs. Both Microsoft and Netscape managed millions of lines of code as specifications changed and evolved over time. Design reviews and strategy sessions were frequent, and everything was documented. Both companies built contingency time into their schedules, and when release deadlines got close, both chose to scale back product features rather than let milestone dates slip.

Incremental Model

The incremental model divides the product into builds, where sections of the project are created and tested separately. This approach will likely find errors in user requirements quickly, since user feedback is solicited for each stage and because code is tested sooner after it's written.

Rad Model

The RAD models a linear sequential software development process that emphasizes an extremely short development cycle. The RAD model is a "high speed" adaptation of the linear sequential model in which rapid development is achieved by using a component-based construction approach. Used primarily for information systems applications, the RAD approach encompasses the following phases:

1. Business modeling

The information flow among business functions is modeled in a way that answers the following questions:

What information drives the business process?
What information is generated?
Who generates it?
Where does the information go?
Who processes it?

2. Data modeling

The information flow defined as part of the business modeling phase is refined into a set of data objects that are needed to support the business. The characteristic (called attributes) of each object is identified and the relationships between these objects are defined.

3. Process modeling

The data objects defined in the data-modeling phase are transformed to achieve the information flow necessary to implement a business function. Processing the descriptions is created for adding, modifying, deleting, or retrieving a data object.

4. Application generation

The RAD model assumes the use of the RAD tools like VB, VC++, and Delphi etc... Rather than creating software using conventional third generation programming languages. The RAD model works to reuse existing program components (when possible) or create reusable components (when necessary). In all cases, automated tools are used to facilitate construction of the software.

5. Testing and turnover
Since the RAD process emphasizes reuse, many of the program components have already been tested. This minimizes the testing and development time.

Prototyping Model

In the prototyping (sometimes called rapid prototyping or rapid application development) model, initial emphasis is on creating a prototype that looks and acts like the desired product in order to test its usefulness. The prototype is an essential part of the requirements determination phase, and may be created using tools different from those used for the final product. Once the prototype is approved, it is discarded and the "real" software is written.
This is a cyclic version of the linear model. In this model, once the requirement analysis is done and the design for a prototype is made, the development process gets started. Once the prototype is created, it is given to the customer for evaluation. The customer tests the package and gives his/her feed back to the developer who refines the product according to the customer's exact expectation. After a finite number of iterations, the final software package is given to the customer. In this methodology, the software is evolved as a result of periodic shuttling of information between the customer and developer. This is the most popular development model in the contemporary IT industry. Most of the successful software products have been developed using this model - as it is very difficult (even for a whiz kid!) to comprehend all the requirements of a customer in one shot. There are many variations of this model skewed with respect to the project management styles of the companies. New versions of a software product evolve as a result of prototyping.


Build And Fix Model

Build and fix is the crudest of the methods. Write some code, and then keep modifying it until the customer is happy. Without planning, this is very open-ended and can be risky.

Spiral Model

The spiral model emphasizes the need to go back and reiterate earlier stages a number of times as the project progresses. It's actually a series of short waterfall cycles, each producing an early prototype representing a part of the entire project. This approach helps demonstrate a proof of concept early in the cycle, and it more accurately reflects the disorderly, even chaotic evolution of technology.

Fountain Model

The waterfall model is well understood, but it's not as useful as it once was. In a 1991 Information Center Quarterly article, Larry Runge says that SDLC "works very well when we are automating the activities of clerks and accountants. It doesn't work nearly as well, if at all, when building systems for knowledge workers -- people at help desks, experts trying to solve problems, or executives trying to lead their company into the Fortune 100."

Another problem is that the waterfall model assumes that the only role for users is in specifying requirements, and that all requirements can be specified in advance. Unfortunately, requirements grow and change throughout the process and beyond, calling for considerable feedback and iterative consultation. Thus many other SDLC models have been developed.
The fountain model recognizes that although some activities can't start before others -- such as you need a design before you can start coding -- there's a considerable overlap of activities throughout the development cycle.

Waterfall Or Linear Sequential Model

The oldest of these, and the best known, is the waterfall: a sequence of stages in which the output of each stage becomes the input for the next. These stages can be characterized and divided up in different ways, including the following:

Project planning, feasibility study: Establishes a high-level view of the intended project and determines its goals.

This is also known as Classic Life Cycle Model (or) Linear Sequential Model (or) Waterfall Method. This model has the following activities.

Systems analysis, requirements definition: Refines project goals into defined functions and operation of the intended application, analyzes end-user information needs.

Systems design: Describes desired features and operations in detail, including screen layouts, business rules, process diagrams, pseudo code and other documentation.

Implementation: The real code is written here.

Integration and testing: Brings all the pieces together into a special testing environment, then checks for errors, bugs and interoperability.

Acceptance, installation, deployment: The final stage of initial development, where the software is put into production and runs actual business.

Maintenance: What happens during the rest of the software's life: changes, correction, additions and moves to a different computing platform and more? This, the least glamorous and perhaps most important step of all, goes on seemingly forever.

1. System/Information Engineering and Modeling

As software is always of a large system (or business), work begins by establishing the requirements for all system elements and then allocating some subset of these requirements to software. This system view is essential when the software must interface with other elements such as hardware, people and other resources. System is the basic and very critical requirement for the existence of software in any entity. So if the system is not in place, the system should be engineered and put in place. In some cases, to extract the maximum output, the system should be re-engineered and spruced up. Once the ideal system is engineered or tuned, the development team studies the software requirement for the system.

2. Software Requirement Analysis

This process is also known as feasibility study. In this phase, the development team visits the customer and studies their system. They investigate the need for possible software automation in the given system. By the end of the feasibility study, the team furnishes a document that holds the different specific recommendations for the candidate system. It also includes the personnel assignments, costs, project schedule, target dates etc.... The requirement gathering process is intensified and focused specially on software. To understand the nature of the program(s) to be built, the system engineer or "Analyst" must understand the information domain for the software, as well as required function, behavior, performance and interfacing. The essential purpose of this phase is to find the need and to define the problem that needs to be solved.

3. System Analysis and Design

In this phase, the software development process, the software's overall structure and its nuances are defined. In terms of the client/server technology, the number of tiers needed for the package architecture, the database design, the data structure design etc... are all defined in this phase. A software development model is thus created. Analysis and Design are very crucial in the whole development cycle. Any glitch in the design phase could be very expensive to solve in the later stage of the software development. Much care is taken during this phase. The logical system of the product is developed in this phase.

4. Code Generation

The design must be translated into a machine-readable form. The code generation step performs this task. If the design is performed in a detailed manner, code generation can be accomplished without much complication. Programming tools like compilers, interpreters, debuggers etc... are used to generate the code. Different high level programming languages like C, C++, Pascal, Java are used for coding. With respect to the type of application, the right programming language is chosen.

5. Testing

Once the code is generated, the software program testing begins. Different testing methodologies are available to unravel the bugs that were committed during the previous phases. Different testing tools and methodologies are already available. Some companies build their own testing tools that are tailor made for their own development operations.

6. Maintenance
The software will definitely undergo change once it is delivered to the customer. There can be many reasons for this change to occur. Change could happen because of some unexpected input values into the system. In addition, the changes in the system could directly affect the software operations. The software should be developed to accommodate changes that could happen during the post implementation period.

System / Software Development Life Cycle (SDLC)

Once upon a time, software development consisted of a programmer writing code to solve a problem or automate a procedure. Nowadays, systems are so big and complex that teams of architects, analysts, programmers, testers and users must work together to create the millions of lines of custom-written code that drive our enterprises.

To manage this, a number of system development life cycles (SDLC) models have been created:

• General Model
• Waterfall
• Fountain
• Spiral
• Build and fix
• Prototyping
• RAD Model
• Incremental
• Synchronize and stabilize.

GENERAL MODEL:
Software life cycle models describe phases of the software cycle and the order in which those phases are executed. There are tons of models, and many companies adopt their own, but all have very similar patterns. The general, basic model is shown below:
General Life Cycle Model
Each phase produces deliverables required by the next phase in the life cycle. Requirements are translated into design. Code is produced during implementation that is driven by the design. Testing verifies the deliverable of the implementation phase against requirements.

Requirements:
Business requirements are gathered in this phase. This phase is the main focus of the project managers and stake holders. Meetings with managers, stake holders and users are held in order to determine the requirements. Who is going to use the system? How will they use the system? What data should be input into the system? What data should be output by the system? These are general questions that get answered during a requirements gathering phase. This produces a nice big list of functionality that the system should provide, which describes functions the system should perform, business logic that processes data, what data is stored and used by the system, and how the user interface should work. The overall result is the system as a whole and how it performs, not how it is actually going to do it.

Design:
The software system design is produced from the results of the requirements phase. Architects have the ball in their court during this phase and this is the phase in which their focus lies. This is where the details on how the system will work is produced. Architecture, including hardware and software, communication, software design (UML is produced here) are all part of the deliverables of a design phase.

Implementation:
Code is produced from the deliverables of the design phase during implementation, and this is the longest phase of the software development life cycle. For a developer, this is the main focus of the life cycle because this is where the code is produced. Implementation my overlap with both the design and testing phases. Many tools exists (CASE tools) to actually automate the production of code using information gathered and produced during the design phase.

Testing:
During testing, the implementation is tested against the requirements to make sure that the product is actually solving the needs addressed and gathered during the requirements phase. Unit tests and system/acceptance tests are done during this phase. Unit tests act on a specific component of the system, while system tests act on the system as a whole.